400nm 500nm 550nm 550nm

High Performance Keyboard Coatings

Aneta Bogdanova and Rick Longo, Performance Coatings International Laboratories, USA

Need of Protective Coatings

Keyboard Coatings Challenges

- Reduce Key Cap Wear with Continuous Long Term Usage
- Meet Demanding Customer Specifications
- Fight Workplace Germs
- Comply with International Health, Safety & Environmental Requirements
- Competitive Prices

Gloss Reduction

matted surface

500nm

00nm

0nm

Wear Resistance

Key Wear Durability

CS-5 Wearaser, 200g load, 38 mm stroke, 250 000 cycles

Legend Abrasion

CS-10F Wearaser, 500g load, 9.5 mm stroke, 1250 cycles

Gloss Reduction

- Silica Particles
- Minerals
- Organic Particles
- Waxes
- Self-matting Resins

MODEL UV SYSTEM	%
Multifunctional Acrylates	30
Rheology modifier	2
Flow Additive	0.4
Initiator	1.3
Solvents	66.3

Gloss Reduction with Silica

500nm

Gloss Reduction - Coating Thickness Dependence

500nm

John M

00nm

7500

Gloss Reduction with Organic Particles

Gloss Reduction

- Mineral fillers- kaolin, cristobalite, calcium carbonate, ceramic microspheres
 - Not significant wear resistance
 - Effect on opacity
 - Increased pencil hardness with ceramic microspheres
- Waxes polyethylene, polypropylene, amide, PTFE
 - Significant improvement of surface properties

Gloss Reduction with Self-matting Resins

Muoo

000

00nm

75000

Gloss Reduction Using Different Resins

Type of resin in solvent borne anti- glare formulation	60° Gloss at 8 µm coating thickness on polycarbonate	<u>Taber</u> a 100 cycles	Taber ^a 500 cycles	Pencil Hardness ^b
Multifunctional acrylate	15	2.3	9.4	Н
Polyether acrylate	13	3.2	7.0	Н
Polyurethane acrylate	15	2.8	8.5	Н
Silica nanocomposite in acrylate/ multifunctional acrylate (1:1)	5	1.8	2.3	Н

^aASTM D-1044, CS-10 wheels, 500g load @ 100 and 500 cycles % Δ – Haze – PC data

High Performance Keyboard Coatings

Coating	Chemistry	Matting Effect	Uses
Coating 1	Nanocomposite/Acrylates	Silica, wax	Premium Non-textured material Optimal coating thickness - 8µm
Coating 2	Urethane Acrylate – self-matting	Self-matting, silica	Smooth and textured material Smooth finish Thickness 15µm
Coating 3	Acrylates	Silica	Smooth and textured material Cost effective Ease to control gloss Thickness 12µm

High Performance Keyboard Coatings

	Coating 1	Coating 2	Coating 3
Adhesion ^a	100%	100%	100%
Gloss ^b	5	3	3
Coating Thickness ^c ,	8	15	12
μm			
Legend Test ^d	pass	pass	pass
Wear Resistance ^d	>250,000	250,000	250,000
RCA ^e	>150	150	150
Pencil Hardness ^f	1 H	1 H	1 H
Steel Wool Scratch ^g ,	24	5	32
psi			

^b ASTM D 523

PERFORMANCE

INTERNATIONAL

COATINGS

LABORATORIES, LLC

^c Measured with micrometer

^d Described earlier

e ASTM F-2357

f ASTM D 3363 750g load, Mitsu-Bishi Hi Uni pencils, ABS

⁹ Rotary test representing scratching using #0000 steel wool pad at load @5 rotations. (No scratches at load) - PC data

Resistance to Common Products

Product	Resistance of Coatings 1,2 and 3
Coffee	А
Diet Pepsi®	Α
Windex [®]	Α
Hand Soap	Α
Chlorox [®]	Α
Fantastic® Cleaner	Α
Sunscreen	Α
Hand Cream	Α
Ketchup	Α
Mustard	Α

A-Superior Resistance, Long Term Contact (>24 hours)

B-Excellent Resistance, Contact up to 8 hours

C-Good Resistance, Contact up to 1 hour

00nm

000nm

750nn

Chemical Resistance

Chemical Resistance	Uncoated ABS	Coating 1	Coating 2	Coating 3
Gasoline	С	А	А	А
Acetone	С	В	В	В
Methyl Ethyl Ketone	С	В	В	В
Propyl Alcohol	А	Α	Α	Α
Toluene	С	Α	Α	Α
Ethyl Alcohol	А	Α	Α	Α
Sulfuric Acid (10%)	А	Α	Α	Α
Sodium hydroxide10% (10%)	С	В	В	А

A-Superior Resistance, Long Term Contact (>24 hours)

B-Excellent Resistance, Contact up to 8 hours

C-Good Resistance, Contact up to 1 hour

00nm

mu00

00nm

750nn

Environmental Test Results

Test	Unexposed	Humidity ¹
Haze ²	44.2	44.5
Yellow Index ³	1.0	1.1
Adhesion ⁴ [%]	100	100

ASTM D-2247 – 750h @52°C and 100% RH ASTM D-1003 ASTM D-1925 ASTM D-3359

600n

700nm

750nn

Anti-Microbial Properties

	Escherichia coli Staphylococcus areus			us areus	Antimicrobial efficacy				
	Number of living bacteria		Antimicrobial activity value against blank	Number of living bacteria		bacteria activity value		Antimicrobial activity value against blank	against blank) Reduction %
	At beginning	After 24 h		At beginning	After 24 h				
Coating AB1 (blank)	1.4 x 10 ⁵	3.0x10 ⁷		1.8x10 ⁵	9.5x10 ⁵				
Coating AB1 (0.2%)	1.4 x 10 ⁵	<1x10 ²	>5.4	1.8x10 ⁵	<1x10 ²	>3.9	>99.9		
Coating AB2 (blank)	1.4 x 10 ⁵	3.2x10 ⁷		1.8x10 ⁵	2.8x10 ⁵				
Coating AB2 (0.2%)	1.4 x 10 ⁵	<1x10 ²	>5.4	1.8x10 ⁵	<1x10 ²	>3.4	>99.9		
Coating AB3 (blank)	1.4 x 10 ⁵	3.2x10 ⁷		1.8x10 ⁵	2.8x10 ⁵				
Coating AB3 (0.2%)	1.4 x 10 ⁵	<1x10 ²	>5.5	1.8x10 ⁵	<1x10 ²	>3.4	>99.9		
Control Uncoated ABS	1.4 x 10 ⁵	3.7x10 ⁷		1.8x10 ⁵	3.7x10 ⁷				

JIS 2801

Spray Application

- Continuous Agitation of Formulation to Maintain Homogeneity
- Spray Booth Relative Humidity: < 50%
- Spray Booth Air Temperature: 23 27°C
- Spray Gun: Conventional
- In-Line Filter: 10 -15 micron (1250 625 mesh)
- Flash off: 3-5 min @ 35 40°C Convection Oven
- UV: 1000mJ/cm² (EIT UVA) Medium Pressure Mercury Lamp

500nm

000nm

700nm

Other Considerations

- Quality of Molded Keyboards
- Cleaning of Keyboards
- Proper Choice of Solvents
- Accurate Processing Parameters
- Adequate Thickness Measurements

Quality of Molded Keyboard Keys

Poor quality molding Non uniform surface

Cleaning of Keyboards

- Insufficient cleaning results in smearing of contaminants
- Improper cleaning can lead to non-uniformity of gloss and adhesion problems.

Proper Choice of Solvents

- Typically spray application requires at least three types of solvents
 - fast, medium and slow evaporating
- IR vs Convection oven
- Limited solvent options in order to prevent chemical attack to ABS

muul

,00nm

750n

Temperature and Humidity Test

Coating 1 processed within thickness, flash off and UV energy recommended ranges

Coating 1 coated with insufficient UV energy

00nn

Jum

0nm

.

Coating Thickness Measurements

Micrometer

Difference in thickness of coated and uncoated substrate

Tooke Gage

Microscopic observation of a precision cut

Conclusions

- New UV curable coatings
- Low gloss
- Abrasion and wear resistance
- Chemical resistance
- Durability under environmental conditions
- Thin dry film thickness
- Compliance with international health, safety and environmental standards

Thank you for your attention

